101 research outputs found

    Association between a rare SNP in the second intron of human Agouti related protein gene and increased BMI

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The agouti related protein (AGRP) is an endogenous antagonist of the melanocortin 4 receptor and is one of the most potent orexigenic factors. The aim of the present study was to assess the genetic variability of <it>AGRP </it>gene and investigate whether the previously reported SNP rs5030980 and the rs11575892, a SNP that so far has not been studied with respect to obesity is associated with increased body mass index (BMI).</p> <p>Methods</p> <p>We determined the complete sequence of the <it>AGRP </it>gene and upstream promoter region in 95 patients with severe obesity (BMI > 35 kg/m<sup>2</sup>). Three polymorphisms were identified: silent mutation c.123G>A (rs34123523) in the second exon, non-synonymous mutation c.199G>A (rs5030980) and c.131-42C>T (rs11575892) located in the second intron. We further screened rs11575892 in a selected group of 1135 and rs5030980 in group of 789 participants from the Genome Database of Latvian Population and Latvian State Research Program Database.</p> <p>Results</p> <p>The CT heterozygotes of rs11575892 had significantly higher mean BMI value (p = 0.027). After adjustment for age, gender and other significant non-genetic factors (presence of diseases), the BMI levels remained significantly higher in carriers of the rs11575892 T allele (p = 0.001). The adjusted mean BMI value of CC genotype was 27.92 ± 1.01 kg/m<sup>2 </sup>(mean, SE) as compared to 30.97 ± 1.03 kg/m<sup>2 </sup>for the CT genotype. No association was found between rs5030980 and BMI.</p> <p>Conclusion</p> <p>This study presents an association of rare allele of <it>AGRP </it>polymorphism in heterozygous state with increased BMI. The possible functional effects of this polymorphism are unclear but may relate to splicing defects.</p

    Mammalian Comparative Sequence Analysis of the Agrp Locus

    Get PDF
    Agouti-related protein encodes a neuropeptide that stimulates food intake. Agrp expression in the brain is restricted to neurons in the arcuate nucleus of the hypothalamus and is elevated by states of negative energy balance. The molecular mechanisms underlying Agrp regulation, however, remain poorly defined. Using a combination of transgenic and comparative sequence analysis, we have previously identified a 760 bp conserved region upstream of Agrp which contains STAT binding elements that participate in Agrp transcriptional regulation. In this study, we attempt to improve the specificity for detecting conserved elements in this region by comparing genomic sequences from 10 mammalian species. Our analysis reveals a symmetrical organization of conserved sequences upstream of Agrp, which cluster into two inverted repeat elements. Conserved sequences within these elements suggest a role for homeodomain proteins in the regulation of Agrp and provide additional targets for functional evaluation

    Coordinated changes in energy intake and expenditure following hypothalamic administration of neuropeptides involved in energy balance

    No full text
    OBJECTIVE: The hypothalamic control of energy balance is regulated by a complex network of neuropeptide-releasing neurons. Whilst the effect of these neuropeptides on individual aspects of energy homeostasis has been studied, the coordinated response of these effects has not been comprehensively investigated. We have simultaneously monitored a number of metabolic parameters following ICV administration of 1nmol and 3nmol of neuropeptides with established roles in the regulation of feeding, activity and metabolism. Ad libitum fed rats received the orexigenic neuropeptides neuropeptide Y (NPY), agouti-related protein (AgRP), melanin-concentrating hormone (MCH) or orexin-A. Overnight food deprived rats received an ICV injection of the anorectic peptides α-MSH, corticotrophin releasing factor (CRF) or neuromedin U (NMU). RESULTS: Our results reveal the temporal sequence of the effects of these neuropeptides on both energy intake and expenditure, highlighting key differences in their function as mediators of energy balance. NPY and AgRP increased feeding and decreased oxygen consumption, with the effects of AgRP being more prolonged. In contrast, orexin-A increased both feeding and oxygen consumption, consistent with an observed increase in activity. The potent anorexigenic effects of CRF were accompanied by a prolonged increase in activity whilst NMU injection resulted in significant but short-lasting inhibition of food intake, ambulatory activity and oxygen consumption. Alpha-MSH injection resulted in significant increases in both ambulatory activity and oxygen consumption, and reduced food intake following administration of 3nmol of the peptide. CONCLUSION: We have for the first time, simultaneously measured several metabolic parameters following hypothalamic administration of a number of neuropeptides within the same experimental system. This work has demonstrated the interrelated effects of these neuropeotides on activity, energy expenditure and food intake thus facilitating comparison between the different hypothalamic systems

    Missense and nonsense mutations in melanocortin 1 receptor (MC1R) gene of different goat breeds: association with red and black coat colour phenotypes but with unexpected evidences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Agouti </it>and <it>Extension </it>loci control the relative amount of eumelanin and pheomelanin production in melanocytes that, in turn, affects pigmentation of skin and hair. The <it>Extension </it>locus encodes the melanocortin 1 receptor (MC1R) whose permanent activation, caused by functional mutations, results in black coat colour, whereas other inactivating mutations cause red coat colour in different mammals.</p> <p>Results</p> <p>The whole coding region of the <it>MC1R </it>gene was sequenced in goats of six different breeds showing different coat colours (Girgentana, white cream with usually small red spots in the face; Maltese, white with black cheeks and ears; Derivata di Siria, solid red; Murciano-Granadina, solid black or solid brown; Camosciata delle Alpi, brown with black stripes; Saanen, white; F<sub>1 </sub>goats and the parental animals). Five single nucleotide polymorphisms (SNPs) were identified: one nonsense mutation (p.Q225X), three missense mutations (p.A81V, p.F250V, and p.C267W), and one silent mutation. The stop codon at position 225 should cause the production of a shorter MC1R protein whose functionality may be altered. These SNPs were investigated in a larger sample of animals belonging to the six breeds. The Girgentana breed was almost fixed for the p.225X allele. However, there was not complete association between the presence of red spots in the face and the presence of this allele in homozygous condition. The same allele was identified in the Derivata di Siria breed. However, its frequency was only 33%, despite the fact that these animals are completely red. The p.267W allele was present in all Murciano-Granadina black goats, whereas it was never identified in the brown ones. Moreover, the same substitution was present in almost all Maltese goats providing evidence of association between this mutation and black coat colour.</p> <p>Conclusion</p> <p>According to the results obtained in the investigated goat breeds, <it>MC1R </it>mutations may determine eumelanic and pheomelanic phenotypes. However, they are probably not the only factors. In particular, the surprising not complete association of the nonsense mutation (p.Q225X) with red coat colour raises a few hypotheses on the determination of pheomelanic phenotypes in goats that should be further investigated.</p

    Melanism in Peromyscus Is Caused by Independent Mutations in Agouti

    Get PDF
    Identifying the molecular basis of phenotypes that have evolved independently can provide insight into the ways genetic and developmental constraints influence the maintenance of phenotypic diversity. Melanic (darkly pigmented) phenotypes in mammals provide a potent system in which to study the genetic basis of naturally occurring mutant phenotypes because melanism occurs in many mammals, and the mammalian pigmentation pathway is well understood. Spontaneous alleles of a few key pigmentation loci are known to cause melanism in domestic or laboratory populations of mammals, but in natural populations, mutations at one gene, the melanocortin-1 receptor (Mc1r), have been implicated in the vast majority of cases, possibly due to its minimal pleiotropic effects. To investigate whether mutations in this or other genes cause melanism in the wild, we investigated the genetic basis of melanism in the rodent genus Peromyscus, in which melanic mice have been reported in several populations. We focused on two genes known to cause melanism in other taxa, Mc1r and its antagonist, the agouti signaling protein (Agouti). While variation in the Mc1r coding region does not correlate with melanism in any population, in a New Hampshire population, we find that a 125-kb deletion, which includes the upstream regulatory region and exons 1 and 2 of Agouti, results in a loss of Agouti expression and is perfectly associated with melanic color. In a second population from Alaska, we find that a premature stop codon in exon 3 of Agouti is associated with a similar melanic phenotype. These results show that melanism has evolved independently in these populations through mutations in the same gene, and suggest that melanism produced by mutations in genes other than Mc1r may be more common than previously thought

    Chk2 and p53 Are Haploinsufficient with Dependent and Independent Functions to Eliminate Cells after Telomere Loss

    Get PDF
    The mechanisms that cells use to monitor telomere integrity, and the array of responses that may be induced, are not fully defined. To date there have been no studies in animals describing the ability of cells to survive and contribute to adult organs following telomere loss. We developed assays to monitor the ability of somatic cells to proliferate and differentiate after telomere loss. Here we show that p53 and Chk2 limit the growth and differentiation of cells that lose a telomere. Furthermore, our results show that two copies of the genes encoding p53 and Chk2 are required for the cell to mount a rapid wildtype response to a missing telomere. Finally, our results show that, while Chk2 functions by activating the p53-dependent apoptotic cascade, Chk2 also functions independently of p53 to limit survival. In spite of these mechanisms to eliminate cells that have lost a telomere, we find that such cells can make a substantial contribution to differentiated adult tissues

    NPY Neuron-Specific Y2 Receptors Regulate Adipose Tissue and Trabecular Bone but Not Cortical Bone Homeostasis in Mice

    Get PDF
    BACKGROUND: Y2 receptor signalling is known to be important in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone physiology. Y2 receptors are located post-synaptically as well as acting as auto receptors on NPY-expressing neurons, and the different roles of these two populations of Y2 receptors in the regulation of energy homeostasis and body composition are unclear. METHODOLOGY/PRINCIPAL FINDINGS: We thus generated two conditional knockout mouse models, Y2(lox/lox) and NPYCre/+;Y2(lox/lox), in which Y2 receptors can be selectively ablated either in the hypothalamus or specifically in hypothalamic NPY-producing neurons of adult mice. Specific deletion of hypothalamic Y2 receptors increases food intake and body weight compared to controls. Importantly, specific ablation of hypothalamic Y2 receptors on NPY-containing neurons results in a significantly greater adiposity in female but not male mice, accompanied by increased hepatic triglyceride levels, decreased expression of liver carnitine palmitoyltransferase (CPT1) and increased expression of muscle phosphorylated acetyl-CoA carboxylase (ACC). While food intake, body weight, femur length, bone mineral content, density and cortical bone volume and thickness are not significantly altered, trabecular bone volume and number were significantly increased by hypothalamic Y2 deletion on NPY-expressing neurons. Interestingly, in situ hybridisation reveals increased NPY and decreased proopiomelanocortin (POMC) mRNA expression in the arcuate nucleus of mice with hypothalamus-specific deletion of Y2 receptors in NPY neurons, consistent with a negative feedback mechanism between NPY expression and Y2 receptors on NPY-ergic neurons. CONCLUSIONS/SIGNIFICANCE: Taken together these data demonstrate the anti-obesogenic role of Y2 receptors in the brain, notably on NPY-ergic neurons, possibly via inhibition of NPY neurons and concomitant stimulation of POMC-expressing neurons in the arcuate nucleus of the hypothalamus, reducing lipogenic pathways in liver and/or skeletal muscle in females. These data also reveal as an anti-osteogenic effect of Y2 receptors on hypothalamic NPY-expressing neurons on trabecular but not on cortical bone

    Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants

    Get PDF
    Vitiligo is an autoimmune disease in which depigmented skin results from the destruction of melanocytes1, with epidemiological association with other autoimmune diseases2. In previous linkage and genome-wide association studies (GWAS1 and GWAS2), we identified 27 vitiligo susceptibility loci in patients of European ancestry. We carried out a third GWAS (GWAS3) in European-ancestry subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new significantly associated loci and 7 suggestive loci. Most encode immune and apoptotic regulators, with some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some of which corresponds to expression quantitative trait loci (eQTLs) at these loci. Together, the identified genes provide a framework for the genetic architecture and pathobiology of vitiligo, highlight relationships with other autoimmune diseases and melanoma, and offer potential targets for treatment

    Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis

    Get PDF
    The central nervous system (CNS) is capable of gathering information on the body’s nutritional state and it implements appropriate behavioral and metabolic responses to changes in fuel availability. This feedback signaling of peripheral tissues ensures the maintenance of energy homeostasis. The hypothalamus is a primary site of convergence and integration for these nutrient-related feedback signals, which include central and peripheral neuronal inputs as well as hormonal signals. Increasing evidence indicates that glucose and lipids are detected by specialized fuel-sensing neurons that are integrated in these hypothalamic neuronal circuits. The purpose of this review is to outline the current understanding of fuel-sensing mechanisms in the hypothalamus, to integrate the recent findings in this field, and to address the potential role of dysregulation in these pathways in the development of obesity and type 2 diabetes mellitus
    corecore